Powered by RND
Écoutez Data Skeptic dans l'application
Écoutez Data Skeptic dans l'application
(48 139)(250 169)
Sauvegarde des favoris
Réveil
Minuteur

Data Skeptic

Podcast Data Skeptic
Kyle Polich
The Data Skeptic Podcast features interviews and discussion of topics related to data science, statistics, machine learning, artificial intelligence and the lik...

Épisodes disponibles

5 sur 559
  • Optimizing Supply Chains with GNN
    Thibaut Vidal, a professor at Polytechnique Montreal, specializes in leveraging advanced algorithms and machine learning to optimize supply chain operations. In this episode, listeners will learn how graph-based approaches can transform supply chains by enabling more efficient routing, districting, and decision-making in complex logistical networks. Key insights include the application of Graph Neural Networks to predict delivery costs, with potential to improve districting strategies for companies like UPS or Amazon and overcoming limitations of traditional heuristic methods. Thibaut’s work underscores the potential for GNN to reduce costs, enhance operational efficiency, and provide better working conditions for teams through improved route familiarity and workload balance.
    --------  
    38:04
  • The Mystery Behind Large Graphs
    Our guest in this episode is David Tench, a Grace Hopper postdoctoral fellow at Lawrence Berkeley National Labs, who specializes in scalable graph algorithms and compression techniques to tackle massive datasets. In this episode, we will learn how his techniques enable real-time analysis of large datasets, such as particle tracking in physics experiments or social network analysis, by reducing storage requirements while preserving critical structural properties. David also challenges the common belief that giant graphs are sparse by pointing to a potential bias: Maybe because of the challenges that exist in analyzing large dense graphs, we only see datasets of sparse graphs? The truth is out there… David encourages you to reach out to him if you have a large scale graph application that you don't currently have the capacity to deal with using your current methods and your current hardware. He promises to "look for the hammer that might help you with your nail".
    --------  
    47:47
  • Customizing a Graph Solution
    In this episode, Dave Bechberger, principal Graph Architect at AWS and author of "Graph Databases in Action", brings deep insights into the field of graph databases and their applications. Together we delve into specific scenarios in which Graph Databases provide unique solutions, such as in the fraud industry, and learn how to optimize our DB for questions around connections, such as "How are these entities related?" or "What patterns of interaction indicate anomalies?" This discussion sheds light on when organizations should consider adopting graph databases, particularly for cases that require scalable analysis of highly interconnected data and provides practical insights into leveraging graph databases for performance improvements in tasks that traditional relational databases struggle with.
    --------  
    38:07
  • Graph Transformations
    In this episode, Adam Machowczyk, a PhD student at the University of Leicester, specializes in graph rewriting and its intersection with machine learning, particularly Graph Neural Networks. Adam explains how graph rewriting provides a formalized method to modify graphs using rule-based transformations, allowing for tasks like graph completion, attribute prediction, and structural evolution. Bridging the worlds of graph rewriting and machine learning, Adam's work aspire to  open new possibilities for creating adaptive, scalable models capable of solving challenges that traditional methods struggle with, such as handling heterogeneous graphs or incorporating incremental updates efficiently. Real-life applications discussed include using graph transformations to improve recommender systems in social networks, molecular research in chemistry, and enhancing IoT network analysis.
    --------  
    32:48
  • Networks for AB Testing
    In this episode, the data scientist Wentao Su shares his experience in AB testing on social media platforms like LinkedIn and TikTok. We talk about how network science can enhance AB testing by accounting for complex social interactions, especially in environments where users are both viewers and content creators. These interactions might cause a "spillover effect" meaning a possible influence across experimental groups, which can distort results. To mitigate this effect, our guest presents heuristics and algorithms they developed ("one-degree label propagation”) to allow for good results on big data with minimal running time and so optimize user experience and advertiser performance in social media platforms.
    --------  
    36:42

Plus de podcasts Technologies

À propos de Data Skeptic

The Data Skeptic Podcast features interviews and discussion of topics related to data science, statistics, machine learning, artificial intelligence and the like, all from the perspective of applying critical thinking and the scientific method to evaluate the veracity of claims and efficacy of approaches.
Site web du podcast

Écoutez Data Skeptic, Underscore_ ou d'autres podcasts du monde entier - avec l'app de radio.fr

Obtenez l’app radio.fr
 gratuite

  • Ajout de radios et podcasts en favoris
  • Diffusion via Wi-Fi ou Bluetooth
  • Carplay & Android Auto compatibles
  • Et encore plus de fonctionnalités

Data Skeptic: Podcasts du groupe

Applications
Réseaux sociaux
v7.2.0 | © 2007-2025 radio.de GmbH
Generated: 1/18/2025 - 11:01:19 PM