Powered by RND
PodcastsSciencesChoses à Savoir SCIENCES
Écoutez Choses à Savoir SCIENCES dans l'application
Écoutez Choses à Savoir SCIENCES dans l'application
(48 139)(250 169)
Sauvegarde des favoris
Réveil
Minuteur

Choses à Savoir SCIENCES

Podcast Choses à Savoir SCIENCES
Choses à Savoir
Développez facilement votre culture scientifique grâce à un podcast quotidien ! Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.

Épisodes disponibles

5 sur 2289
  • Pourquoi savoir faire bouger ses oreilles est utile ?
    Les muscles auriculaires, vestiges de notre évolution, permettaient autrefois à nos ancêtres de mouvoir leurs oreilles pour mieux localiser les sons, une capacité encore présente chez de nombreux mammifères actuels, tels que les félins. Chez l'humain moderne, seulement 10 à 20 % des individus sont capables de les bouger volontairement. Chez la plupart d'entre nous en effet les muscles concernés sont atrophiés. Cependant, des recherches récentes menées par des scientifiques allemands ont mis en lumière une fonction résiduelle de ces muscles dans l'amélioration de notre capacité auditive, notamment dans des environnements bruyants.​Les muscles auriculaires : un héritage évolutifLes muscles auriculaires se divisent en deux catégories :​Muscles extrinsèques : comprenant les muscles auriculaires antérieur, supérieur et postérieur, ils sont responsables du mouvement du pavillon de l'oreille.​Muscles intrinsèques : ces muscles, tels que le grand et le petit muscle de l'hélix, contribuent à la forme de l'auricule en reliant ses différentes parties cartilagineuses.​Chez l'homme, ces muscles sont considérés comme des structures vestigiales, c'est-à-dire des restes d'organes ou de structures ayant perdu leur fonction initiale au cours de l'évolution. Néanmoins, leur présence suggère une activité résiduelle qui pourrait influencer notre perception auditive.​Influence des muscles auriculaires sur l'auditionDes études récentes ont démontré que, bien que la majorité des humains ne puissent pas bouger volontairement leurs oreilles, l'activité involontaire de ces muscles est liée à l'orientation de notre attention auditive. Lorsqu'un son est perçu, même sans mouvement visible des oreilles, les muscles auriculaires montrent une activité électrique. Cette activité serait associée à une meilleure capacité à localiser et à distinguer les sons dans des environnements bruyants.​Mécanismes sous-jacentsL'activité des muscles auriculaires pourrait influencer la forme et la position du pavillon de l'oreille, modifiant ainsi la manière dont les ondes sonores sont captées et dirigées vers le conduit auditif. Même des ajustements minimes pourraient améliorer la capacité de l'oreille à filtrer les sons pertinents des bruits de fond, facilitant ainsi la concentration sur une source sonore spécifique.​De plus, cette activité musculaire pourrait être liée à des mécanismes neuronaux qui orientent notre attention auditive. En d'autres termes, lorsque nous nous concentrons sur un son particulier, les muscles auriculaires pourraient s'activer inconsciemment pour optimiser la réception de ce son, même sans mouvement apparent des oreilles.​Implications pratiquesComprendre le rôle résiduel des muscles auriculaires dans l'audition humaine ouvre de nouvelles perspectives pour améliorer la perception auditive, notamment dans des environnements bruyants. Par exemple, des dispositifs auditifs pourraient être développés pour stimuler ces muscles, améliorant ainsi la capacité de l'utilisateur à se concentrer sur des sons spécifiques. De plus, des techniques d'entraînement auditif pourraient être mises en place pour renforcer cette fonction naturelle, aidant ainsi les individus à mieux gérer les situations auditives complexes.En conclusion, bien que la capacité de bouger volontairement les oreilles soit largement perdue chez l'humain moderne, l'activité résiduelle des muscles auriculaires joue un rôle subtil mais significatif dans notre capacité à filtrer et à focaliser notre attention sur des sons spécifiques, particulièrement dans des environnements bruyants. Cette découverte souligne l'importance de ces structures vestigiales et ouvre la voie à de nouvelles approches pour améliorer l'audition humaine. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.
    --------  
    2:43
  • Comment un célèbre manuscrit scientifique a été sauvée grâce à des dessins d'enfants ?
    Sécurisez votre vie privée avec Surfshark. Vous pouvez profiter de 4 mois supplémentaires en utilisant le lien https://surfshark.com/savoir2------------------------------Lorsque Charles Darwin rédigea L’Origine des espèces, publié en 1859, il posa les bases de la théorie de l’évolution par sélection naturelle. Dans cet ouvrage révolutionnaire, il expliquait comment les espèces vivantes évoluent au fil du temps en fonction des pressions de leur environnement. Il y démontrait que les individus possédant des traits avantageux survivaient mieux et transmettaient ces caractéristiques à leur descendance, conduisant progressivement à la transformation des espèces.Pour aboutir à cette théorie, Darwin s’appuya sur des décennies d’observations faites lors de son voyage à bord du Beagle et sur des milliers de notes scientifiques. Son ouvrage contestait l’idée dominante d’une création fixe des espèces et bouleversa la biologie et la compréhension de l’origine du vivant.Un manuscrit largement perduAvant la publication de son livre, Darwin écrivit un brouillon détaillé de son œuvre, connu sous le nom de "Grand Livre", qui comptait environ 650 pages. Mais après la sortie de L’Origine des espèces, il jugea ces notes inutiles et en détruisit progressivement la majorité. À l’époque, le papier était une ressource précieuse, et Darwin avait l’habitude de recycler ses manuscrits pour des usages domestiques, comme allumer des feux.Les dessins des enfants Darwin : un sauvetage inattenduCependant, un heureux hasard permit de sauver quelques pages du manuscrit original. Darwin et sa femme Emma avaient plusieurs enfants qui, comme tous les enfants, adoraient dessiner et griffonner. Ils utilisaient souvent les vieilles feuilles de leur père pour laisser libre cours à leur imagination.Touché par ces dessins, Darwin choisit de conserver ces pages illustrées au lieu de les jeter. Il les considérait comme des souvenirs précieux de l’enfance de ses fils et filles. Grâce à cette affection paternelle, une poignée de pages de son manuscrit a pu être préservée et retrouvée plus tard par les historiens.Un fragment d’histoire scientifique sauvéAujourd’hui, ces rares fragments du manuscrit original sont conservés dans des collections historiques. Ils permettent aux chercheurs de mieux comprendre l’évolution de la pensée de Darwin et les révisions qu’il apporta avant la publication de son œuvre majeure.Ainsi, sans les dessins innocents de ses enfants, l’intégralité du manuscrit aurait sans doute disparu, nous privant d’un témoignage unique sur l’un des livres les plus influents de l’histoire des sciences. Un bel exemple de la manière dont un simple geste familial a contribué, sans le savoir, à préserver une partie essentielle du patrimoine scientifique mondial. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.
    --------  
    3:33
  • Pourquoi la faim nous rend-elle irritables ?
    L’irritabilité liée à la faim est un phénomène bien réel et largement étudié en neurosciences et en physiologie. Elle repose sur une combinaison de facteurs biologiques et hormonaux, qui affectent directement le cerveau et notre humeur. Voici les principaux mécanismes scientifiques qui expliquent pourquoi nous devenons irritables lorsque nous avons faim.1. Une baisse du glucose dans le sangLe glucose est la principale source d’énergie du cerveau. Or, lorsque nous avons faim, notre taux de glucose sanguin diminue (hypoglycémie), ce qui impacte directement notre fonctionnement cérébral.Le cortex préfrontal, qui régule nos émotions et notre capacité à contrôler nos impulsions, est particulièrement sensible aux fluctuations de glucose. Lorsque le glucose diminue, la capacité du cerveau à gérer le stress et les émotions négatives s’affaiblit, ce qui rend plus difficile le contrôle de l’irritabilité. 2. Une augmentation des hormones du stressLorsque nous avons faim, notre corps perçoit cette situation comme un stress physiologique. Pour compenser, il libère des hormones de stress, en particulier :Le cortisol, qui est l’hormone principale du stress et qui augmente l’irritabilité. L’adrénaline, qui stimule le système nerveux et nous met en état d’alerte, rendant nos réactions plus vives et plus agressives. Cette réaction est un vestige évolutif : nos ancêtres devaient être plus réactifs et agressifs lorsqu’ils avaient faim pour augmenter leurs chances de trouver de la nourriture.3. L’augmentation de la ghréline, l’hormone de la faimLa ghréline est une hormone produite par l’estomac lorsqu’il est vide. Son rôle principal est de stimuler l’appétit, mais elle influence aussi directement le cerveau en agissant sur l’amygdale, la région impliquée dans la gestion des émotions et de l’agressivité.Des études montrent que des niveaux élevés de ghréline sont associés à une augmentation de l’irritabilité et de l’impulsivité. Cette hormone active également le système de récompense, rendant la frustration plus intense si nous ne trouvons pas immédiatement de quoi manger. 4. Un impact sur les neurotransmetteurs : baisse de la sérotonineLa sérotonine est un neurotransmetteur essentiel au bien-être et à la régulation des émotions. Or, son niveau dépend des nutriments présents dans notre alimentation, notamment le tryptophane, un acide aminé contenu dans certains aliments.Lorsque nous avons faim, la production de sérotonine diminue, ce qui peut provoquer des sauts d’humeur, de l’anxiété et de l’irritabilité. Ce phénomène est aussi observé chez les personnes en régime restrictif, qui deviennent souvent plus irritables et impulsives. Conclusion : la faim, un véritable stress pour le cerveauL'irritabilité causée par la faim est donc le résultat d’un cocktail hormonal et neurochimique, combinant :✅ Une baisse du glucose qui perturbe la régulation émotionnelle.✅ Une libération d’hormones de stress (cortisol, adrénaline).✅ Une production accrue de ghréline, qui stimule l’agressivité.✅ Une réduction de la sérotonine, qui diminue la tolérance au stress.Ainsi, la faim altère temporairement notre capacité à gérer nos émotions, expliquant pourquoi nous sommes plus irritables lorsque notre estomac crie famine. Heureusement, ce phénomène disparaît dès que nous consommons de la nourriture, rétablissant l’équilibre biochimique du cerveau ! Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.
    --------  
    2:27
  • Peut-on vraiment voir le Mont Blanc depuis la Tour Eiffel ?
    Tous les écoliers de France le savent : du haut de ses 4.810 mètres, le mont Blanc est le plus haut sommet de l'Hexagone. Il doit donc se voir de très loin. Et, de fait, on peut parfois l'apercevoir depuis la Suisse ou même l'Alsace.Certains prétendent même qu'un visiteur parvenu au sommet de la Tour Eiffel pourrait distinguer cette montagne.Il est vrai que l'œil humain est capable de discerner des objets très éloignés. Et il les verra d'autant mieux qu'ils sont plus hauts et que l'observateur est lui-même plus grand.Ainsi, si une personne d'1,80 m peut distinguer un homme à une distance de près de 4,80 km, il pourra apercevoir la flèche de la cathédrale de Chartres, qui s'élève à plus de 110 m du sol, même s'il se trouve à 38 km de là.Une planète sphériqueAlors, est-il possible de voir le mont Blanc depuis la Tour Eiffel ? Sans répondre encore à cette question, il faut rappeler que certaines conditions doivent être réunies pour qu'un observateur distingue un objet lointain.Il faut d'abord qu'aucun obstacle n'obstrue le champ de vision de l'observateur. Par ailleurs, il verra plus loin s'il gagne en hauteur. À cet égard, la Tour Eiffel est donc un bon point d'observation.Notre planète étant sphérique, les objets que l'observateur s'efforce de voir vont finir par disparaître sous la ligne d'horizon. Pour calculer cette distance, à partir de laquelle les objets ne sont plus visibles, il faut recourir au célèbre théorème de Pythagore.Il nous enseigne que le mont Blanc est visible à 247,5 km à la ronde, alors que la Tour Eiffel, haute de 324 m peut être encore aperçue par un observateur situé à 64,2 km. Or, comme la distance de Paris au mont Blanc est d'un peu plus de 475 km, il est donc impossible de percevoir la montagne du haut du célèbre monument parisien.En altitude, enfin, la lumière ne se diffuse pas tout à fait en ligne droite, ce qui limite la perception des objets lointains. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.
    --------  
    1:49
  • Pourquoi Vénus tourne dans le sens inverse des autres planètes ?
    Vénus, la deuxième planète du Système solaire, intrigue les astronomes depuis des siècles. Elle possède une particularité unique : sa rotation est rétrograde, c’est-à-dire qu’elle tourne sur elle-même dans le sens opposé à la plupart des autres planètes, y compris la Terre. Alors que la plupart des planètes tournent dans le même sens que leur révolution autour du Soleil, Vénus tourne sur elle-même dans le sens inverse. Comment expliquer ce phénomène étrange ?Une rotation atypique et extrêmement lenteLa majorité des planètes, dont la Terre, tournent d'ouest en est, dans le même sens que leur révolution autour du Soleil. En revanche, Vénus tourne d'est en ouest. En d’autres termes, si l’on pouvait observer le Soleil depuis la surface de Vénus, il semblerait se lever à l’ouest et se coucher à l’est, à l’opposé de ce que l’on observe sur Terre.De plus, la rotation de Vénus est extrêmement lente : une journée vénusienne dure 243 jours terrestres, soit plus longtemps qu’une année sur Vénus, qui ne dure que 225 jours terrestres ! Autrement dit, une journée sur Vénus est plus longue que son année.L’hypothèse d’une collision gigantesqueL’explication la plus courante pour cette rotation inversée repose sur l’hypothèse d’un impact géant survenu il y a plusieurs milliards d’années. À l’origine, Vénus aurait probablement tourné dans le même sens que les autres planètes. Cependant, une collision avec un astre massif aurait modifié son axe de rotation, provoquant un ralentissement et même une inversion progressive du mouvement.Une autre hypothèse suggère que ce changement serait dû aux effets gravitationnels du Soleil sur l’atmosphère dense de Vénus. La planète étant enveloppée d’une épaisse couche de gaz, des forces de marée gravitationnelles auraient pu agir sur sa rotation au fil du temps, inversant progressivement son sens de rotation.Une planète pleine de mystèresVénus reste une planète fascinante, et son comportement atypique continue d’intriguer les scientifiques. En plus de sa rotation inversée, elle est recouverte d’une atmosphère extrêmement dense et toxique, composée principalement de dioxyde de carbone, avec des températures atteignant 475°C en surface. Ces conditions extrêmes rendent son exploration difficile, mais de nombreuses missions spatiales cherchent encore à percer ses mystères.En conclusion, si Vénus tourne dans le sens inverse des autres planètes, c’est probablement à cause d’un choc colossal ou d’une influence gravitationnelle sur le long terme. Ce phénomène en fait l’une des planètes les plus étranges et captivantes du Système solaire. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.
    --------  
    2:21

Plus de podcasts Sciences

À propos de Choses à Savoir SCIENCES

Développez facilement votre culture scientifique grâce à un podcast quotidien ! Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.
Site web du podcast

Écoutez Choses à Savoir SCIENCES, Y'a plus de saisons ou d'autres podcasts du monde entier - avec l'app de radio.fr

Obtenez l’app radio.fr
 gratuite

  • Ajout de radios et podcasts en favoris
  • Diffusion via Wi-Fi ou Bluetooth
  • Carplay & Android Auto compatibles
  • Et encore plus de fonctionnalités

Choses à Savoir SCIENCES: Podcasts du groupe

Applications
Réseaux sociaux
v7.11.0 | © 2007-2025 radio.de GmbH
Generated: 3/23/2025 - 1:37:21 PM