Powered by RND
PodcastsSciencesChoses à Savoir PLANETE

Choses à Savoir PLANETE

Choses à Savoir
Choses à Savoir PLANETE
Dernier épisode

Épisodes disponibles

5 sur 1016
  • Quel est l'âge du trou dans la couche d’ozone ?
    Le « trou » dans la couche d’ozone est une histoire beaucoup plus récente qu’on ne l’imagine… et surtout, il n’est pas apparu du jour au lendemain.D’abord, une précision : la couche d’ozone stratosphérique existe depuis des centaines de millions d’années. Elle filtre une grande partie des UV-B solaires. Ce qui est récent, ce n’est pas son existence, mais l’amincissement spectaculaire au-dessus de l’Antarctique, qu’on a fini par appeler le « trou ».1. Les premiers signaux : années 1970Dans les années 1970, des chimistes comme Mario Molina et Sherwood Rowland montrent que les CFC (chlorofluorocarbones utilisés dans les sprays, frigos, mousses…) peuvent monter dans la stratosphère, y être détruits par les UV et libérer du chlore. Un seul atome de chlore peut détruire des dizaines de milliers de molécules d’ozone. Théoriquement, le risque est là, mais on ne voit pas encore de « trou » géant.2. La bascule : fin des années 1970 – début des années 1980Les reconstructions montrent qu’un amincissement anormal au-dessus de l’Antarctique commence à se mettre en place à la fin des années 1970, puis s’accentue au début des années 1980. À cette époque, les mesures depuis le sol (par spectrophotomètres Dobson) enregistrent des valeurs de plus en plus basses chaque printemps austral (septembre-octobre).3. Le moment clé : 1985, la découverte publiéeC’est en 1985 qu’on parle vraiment de « trou dans la couche d’ozone ». Cette année-là, une équipe britannique (Farman, Gardiner, Shanklin) publie dans la revue Nature des données montrant qu’entre 1977 et 1984, la quantité d’ozone printanière au-dessus de la base Halley (Antarctique) a chuté d’environ 40 %.Ce n’est pas un simple déclin : c’est une dépression massive, récurrente chaque printemps, couvrant des millions de km². Les premières images satellitaires complètes confirment alors l’ampleur du phénomène : une sorte de « cratère » d’ozone au-dessus du continent blanc.4. Physiquement, que se passe-t-il ?Le trou apparaît chaque printemps austral depuis le début des années 1980, lorsque trois conditions se combinent au-dessus de l’Antarctique :un vortex polaire très froid et stable, des nuages stratosphériques polaires (PSC) où les composés chlorés inoffensifs sont transformés en formes « actives », puis le retour du Soleil au printemps, qui déclenche des réactions photolytiques en chaîne.Résultat : en quelques semaines, une grande partie de l’ozone entre 14 et 22 km d’altitude est détruite.5. Depuis quand, au juste ?Les premiers signes mesurables d’un amincissement inhabituel datent de la fin des années 1970.Le « trou dans la couche d’ozone » au sens strict, massif et récurrent au-dessus de l’Antarctique, est observé chaque printemps austral depuis le début des années 1980 et officiellement décrit en 1985.Depuis le Protocole de Montréal (1987) et la réduction progressive des CFC, le trou montre des signes de lente cicatrisation, mais il continue de se former chaque année ; sa surface et sa profondeur varient selon les conditions météorologiques stratosphériques. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.
    --------  
    2:25
  • Quel a été le tout premier engrais utilisé par l’Homme ?
    Le tout premier engrais utilisé par l’homme n’est pas un produit chimique, ni même un mélange élaboré. Il s’agit d’une ressource entièrement naturelle, disponible depuis les débuts de l’élevage : le fumier, c’est-à-dire les déjections animales mélangées à de la paille et à des restes organiques. Cet engrais originel accompagne l’agriculture depuis ses premiers pas, il y a environ 10 000 ans, au moment où les sociétés humaines du Néolithique passent de la chasse-cueillette à la culture des plantes.Très vite, les premiers agriculteurs ont constaté un problème essentiel : un champ cultivé plusieurs saisons consécutives voit sa productivité diminuer. Les plantes, en poussant, absorbent les nutriments présents dans le sol, notamment l’azote, le phosphore et le potassium. Sans apport extérieur, le sol s’épuise. L’observation de la nature a probablement fourni la solution : dans les zones où les animaux sauvages laissent leurs déjections, les plantes repoussent plus vigoureuses. Cette constatation simple a posé les bases d’une révolution agricole : l’utilisation volontaire du fumier pour restaurer la fertilité du sol.Le fumier possède en effet une richesse exceptionnelle. Il contient des éléments nutritifs essentiels :l’azote, indispensable à la croissance des feuilles ;le phosphore, nécessaire au développement des racines ;le potassium, qui renforce la résistance des plantes.Mais il ne s’agit pas que de nutriments. Le fumier apporte aussi de la matière organique, un élément crucial pour la structure du sol. En se décomposant, cette matière nourrit les micro-organismes, aère la terre, améliore sa capacité à retenir l’eau et permet aux plantes de mieux absorber les éléments minéraux. Pour les premières sociétés agricoles, c’était une découverte majeure : fertiliser signifiait non seulement nourrir la plante, mais aussi régénérer le sol lui-même.Avec la domestication des animaux — bovins, ovins, caprins — le fumier devient rapidement un outil central de l’agriculture. On l’épand au début des semailles, on le mélange à la terre, parfois après compostage. Pendant des millénaires, il reste la base de la fertilité dans toutes les civilisations : en Mésopotamie, en Égypte, en Chine ou en Europe médiévale.D’autres engrais naturels apparaîtront plus tard, comme la cendre végétale ou le guano, mais aucun n’a l’ancienneté du fumier. Il est, historiquement, le premier geste conscient de l’homme pour enrichir un sol et assurer la continuité de ses récoltes. Un geste simple, mais fondamental, qui a rendu possible l’essor de l’agriculture et, avec elle, celui des civilisations humaines. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.
    --------  
    2:35
  • Pourquoi les policiers japonais peuvent tirer sur les ours ?
    Depuis le mois d’avril, le Japon fait face à une recrudescence spectaculaire d’attaques d’ours, une situation qui a conduit les autorités à prendre des mesures exceptionnelles. En quelques mois, treize personnes ont perdu la vie et plus d’une centaine ont été blessées. Les ours noirs et bruns du Japon descendent désormais plus souvent dans les zones habitées, s’aventurant dans les quartiers résidentiels, aux abords des écoles et même dans certains commerces. Face à ce danger croissant, le gouvernement a autorisé la police à utiliser des armes à feu pour abattre les animaux considérés comme menaçants.La multiplication des attaques trouve son origine dans plusieurs facteurs combinés. Depuis une vingtaine d’années, les populations d’ours ont augmenté grâce aux politiques de conservation, à la réduction de la chasse et au déclin du nombre de chasseurs traditionnels, souvent âgés. En parallèle, de vastes régions rurales sont touchées par le dépeuplement : moins de présence humaine signifie davantage d’espace et moins de dissuasion pour la faune sauvage. Les ours se retrouvent plus nombreux et moins effrayés par la proximité des villes.À cela s’ajoutent des conditions environnementales défavorables. Certaines années, les récoltes de glands, de noix et de hêtres – aliments essentiels avant l’hibernation – sont particulièrement mauvaises. Privés de nourriture, les ours descendent alors vers les villes pour se nourrir, fouillant dans les poubelles ou s’approchant des vergers, ce qui augmente mécaniquement les risques de rencontres agressives. Le réchauffement climatique joue également un rôle, modifiant les cycles alimentaires et la disponibilité des ressources en forêt.Face à cette spirale inquiétante, les autorités japonaises ont mis en place un plan d’action : patrouilles renforcées, installation de clôtures électrifiées, utilisation de drones de repérage et mobilisation d’équipes de spécialistes chargés d’intervenir rapidement. Dans certaines préfectures, d’anciens policiers et militaires ont été recrutés pour traquer les ours particulièrement agressifs. Les écoles ont aussi été invitées à adapter leurs horaires et à renforcer les protocoles de sécurité.Cette réponse soulève malgré tout un débat national. Beaucoup de Japonais restent attachés à la figure de l’ours, animal emblématique des montagnes. Le recours accru aux tirs est perçu par certains comme une solution de dernier recours, qui ne répond pas aux causes profondes du problème : gestion des déchets, fragmentation des habitats, raréfaction des ressources forestières.Pour l’instant, l’urgence reste de protéger les populations locales. Mais à long terme, le Japon devra repenser sa manière de cohabiter avec la faune sauvage, dans un contexte climatique et démographique en pleine mutation. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.
    --------  
    2:27
  • Pourquoi la poussière spatiale est-elle utile pour anticiper la fonte de la banquise arctique?
    À première vue, la poussière spatiale — ces minuscules particules venues de comètes, d’astéroïdes ou de météorites — semble bien loin des problématiques liées à la fonte de la banquise arctique. Pourtant, depuis quelques années, elle s’impose comme un outil scientifique précieux pour mieux comprendre, et surtout anticiper, l’évolution de la glace de mer. Comment des grains interstellaires peuvent-ils nous aider à prédire la disparition de la banquise ? L’explication se trouve au cœur d’un domaine fascinant : la géochimie des glaces.Chaque année, environ 40 000 tonnes de poussière spatiale tombent sur la Terre. Une partie minuscule de cette poussière se dépose sur la surface arctique. Lorsque la neige tombe ou que la glace se forme, ces particules sont piégées dans les couches superficielles, comme une empreinte laissée dans un livre d’histoire naturelle. Or cette poussière possède une signature très particulière : elle contient des minéraux et des isotopes métalliques extrêmement rares dans les environnements terrestres.Les climatologues exploitent justement cette signature pour dater et tracer les différentes couches de glace. C’est un peu comme si la poussière extraterrestre servait de repère temporel. Chaque dépôt annuel laisse une « trace chimique » unique. En mesurant la concentration de ces particules dans les carottes de glace, les scientifiques peuvent reconstituer avec une grande précision le rythme de formation, d’épaississement ou de fonte de la banquise sur plusieurs décennies, voire plusieurs siècles.Mais surtout, la poussière spatiale permet de mieux comprendre les mécanismes physiques qui amplifient ou freinent la fonte. En effet, lorsqu’elle s’accumule à la surface de la glace, elle réduit légèrement son pouvoir réfléchissant, son albédo. Une surface plus sombre absorbe davantage d’énergie solaire, ce qui accélère la fonte locale. En quantifiant la poussière présente sur les glaces anciennes et actuelles, les chercheurs peuvent mesurer l’impact réel de cette baisse d’albédo et projeter plus précisément la vitesse de recul de la banquise.La poussière spatiale offre aussi un moyen de distinguer ce qui relève des variations naturelles du climat et ce qui est dû au réchauffement anthropique. Les concentrations de particules extraterrestres suivent des cycles astronomiques connus. En comparant ces cycles aux épisodes de fonte observés, on peut isoler la part liée aux phénomènes naturels… et celle qui est clairement amplifiée par les émissions humaines.En résumé, la poussière spatiale agit comme un marqueur naturel, un instrument de mesure unique qui éclaire le passé de la banquise et affine les modèles climatiques. À des milliers de kilomètres de l’espace, elle contribue à mieux anticiper l’un des enjeux les plus critiques du climat : la disparition de la glace arctique. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.
    --------  
    2:41
  • Où se trouve “la rivière qui bout” ?
    Au cœur de la forêt amazonienne péruvienne, loin des volcans et des zones géothermiques classiques, coule l’un des phénomènes naturels les plus mystérieux de la planète : la rivière Shanay-Timpishka, surnommée « la rivière qui bout ». Sur plus de six kilomètres, son eau atteint des températures stupéfiantes, pouvant monter jusqu’à 86 °C, assez pour provoquer des brûlures graves en quelques secondes… et pourtant, aucun volcan n’est présent dans la région. Comment expliquer un tel prodige ?Pendant longtemps, cette rivière semblait défier les lois de la géothermie. En Amazonie centrale, les nappes phréatiques restent généralement tièdes, profondément isolées des forces volcaniques. C’est d’ailleurs ce paradoxe qui a poussé le géophysicien péruvien Andrés Ruzo à entreprendre l’étude la plus complète jamais réalisée sur Shanay-Timpishka. Sa conclusion, après plusieurs années de recherches, révèle un mécanisme beaucoup plus subtil que l’imaginaire volcanique auquel on pense spontanément.Le secret résiderait dans une circulation hydrothermale exceptionnelle. L’eau de pluie s’infiltrerait très profondément dans le sous-sol amazonien, jusqu’à atteindre des zones anormalement chaudes de la croûte terrestre. Chauffée sous pression, cette eau remonterait ensuite le long de failles et fractures géologiques, réapparaissant en surface sous forme de source brûlante. On parle alors d’un « système hydrothermal non volcanique », un phénomène rare mais scientifiquement plausible lorsque des failles profondes permettent à l’eau d’accéder aux couches géologiques les plus chaudes.Ce qui rend Shanay-Timpishka unique, c’est son ampleur : non pas une source chaude ponctuelle, mais une véritable rivière bouillante sur plusieurs kilomètres. La température de l’eau varie selon la saison, mais reste constamment au-dessus des 50 °C, atteignant 80 à 90 °C au pic de son activité. Les animaux qui tombent dedans sont littéralement « cuits » en quelques minutes — un spectacle dont les communautés locales parlent depuis des générations.D’ailleurs, pour le peuple indigène Asháninka, la rivière a une signification spirituelle profonde. Son nom, Shanay-Timpishka, signifie « chauffée par la colère du soleil ». Bien avant l’arrivée des scientifiques, les habitants voyaient dans cette eau brûlante une force sacrée, un lieu de guérison autant que de danger.Aujourd’hui, la rivière fascine autant qu’elle inquiète. Fragile, menacée par la déforestation et l’exploitation illégale, elle constitue un laboratoire naturel irremplaçable pour les géologues, les biologistes et les climatologues. Comprendre Shanay-Timpishka, c’est mieux saisir la complexité de la planète : une Terre capable, même loin des volcans, de faire bouillir une rivière en pleine jungle. Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.
    --------  
    2:38

Plus de podcasts Sciences

À propos de Choses à Savoir PLANETE

Un podcast dédié à la protection de la planète ! Hébergé par Acast. Visitez acast.com/privacy pour plus d'informations.
Site web du podcast

Écoutez Choses à Savoir PLANETE, Choses à Savoir CERVEAU ou d'autres podcasts du monde entier - avec l'app de radio.fr

Obtenez l’app radio.fr
 gratuite

  • Ajout de radios et podcasts en favoris
  • Diffusion via Wi-Fi ou Bluetooth
  • Carplay & Android Auto compatibles
  • Et encore plus de fonctionnalités

Choses à Savoir PLANETE: Podcasts du groupe

Applications
Réseaux sociaux
v8.0.4 | © 2007-2025 radio.de GmbH
Generated: 12/1/2025 - 5:01:37 AM