We are on the cusp of a materials revolution – in electronics, health care, and avionics – says guest engineer-scientist Eric Pop. For instance, silicon and copper have served electronics admirably for decades, he says, but at the nanoscale, better materials will be needed. Atomically thin two-dimensional semiconductors (like molybdenum disulfide) and topological semimetals (like niobium phosphide) are two candidates, but with AI tools to design new materials, the future is going to be really interesting, Pop tells host Russ Altman on this episode of Stanford Engineering’s The Future of Everything podcast.Have a question for Russ? Send it our way in writing or via voice memo, and it might be featured on an upcoming episode. Please introduce yourself, let us know where you're listening from, and share your quest. You can send questions to
[email protected] Reference Links:Stanford Profile: Eric PopConnect With Us:Episode Transcripts >>> The Future of Everything WebsiteConnect with Russ >>> Threads / Bluesky / MastodonConnect with School of Engineering >>> Twitter/X / Instagram / LinkedIn / FacebookChapters:(00:00:00) IntroductionRuss introduces guest Eric Pop, a professor of electrical engineering and materials science at Stanford University(00:02:59) The Status of Electronics TodayThe stability of silicon and copper and the challenges with miniaturization.(00:06:25) Limits of Current MaterialsHow miniaturization has increased speed but also created new bottlenecks.(00:10:29) Universal MemoryThe need for faster, non-volatile memory that integrates directly with the CPU.(00:14:57) The Search for Next-Gen MaterialsExploring better materials for chips, from silicon to copper alternatives.(00:17:54) Challenges of Copper at NanoscaleIssues with copper at the nanoscale and the potential of niobium phosphate.(00:24:46) Two-Dimensional SemiconductorsThe potential of carbon nanotubes and 2D materials as replacements for silicon.(00:29:47) Nanoelectronics and ManufacturingThe shift to 2D materials and the challenges in scaling up production(00:32:34) AI in Material DiscoveryAI’s potential in discovering and manufacturing new materials.(00:34:56) Conclusion
Connect With Us:Episode Transcripts >>> The Future of Everything WebsiteConnect with Russ >>> Threads / Bluesky / MastodonConnect with School of Engineering >>>Twitter/X / Instagram / LinkedIn / Facebook